February 27-28, 2001

Distributed Air-Ground Traffic Management Research

Richard Mogford, Ph.D.

Manager, Human Factors and Operations

AATT Project

NASA Ames Research Center

February 27-28, 2001

Advanced Air Transportation Technologies Project

Goal

 In alliance with the FAA, enable the next generation of increases in efficiency, flexibility, capacity, and safety of aircraft operations within the US and global airspace system.

Focus

 Develop <u>human-centered</u> automation to assist air traffic management in short and intermediate term decision making between pilots, controllers, and dispatchers.

February 27-28, 2001

-aircraft/airport

Program Benefit

February 27-28, 2001

Focus Areas

- Develop en route and terminal decision support tools for FAA Free Flight Phases 1 and 2
 - Enhance capabilities of present air traffic system
 - Deliver CTAS decision support tools to the FAA
- Distributed Air-Ground Traffic Management (DAG-TM)
 Research
 - Free Flight concept exploration
 - Evaluate feasibility of making major changes to current system and procedures
 - Deliver tested concepts to the FAA

February 27-28, 2001

CTAS Tools and DAG-TM

February 27-28, 2001

DAG-TM Definition

- Distributed Air-Ground Traffic Management is the Free Flight part of AATT
- In DAG-TM flight crews, air traffic service providers, and aeronautical operational control personnel use distributed decision making to:
 - Enable user preferences/flexibility
 - Increase system capacity
 - Meet air traffic management requirements
- NASA will investigate the feasibility of DAG-TM concepts during the next four years
 - Using NASA and FAA laboratory resources

NCED AIR TRANSPORTATION TECHNOLOGIES

DAG-TM Planning Workshop

February 27-28, 2001

Over-arching

Gate-to-Gate:

CE-0 Data Exchange

Pre-flight

Pre-flight Planning:

CE-1 User optimization for Constraints

Flight Operations

Surface Departure:

CE-2 Intelligent [Taxi] routing

Terminal Departure:

- CE-3 Free Maneuvering for Separation
- CE-4 Trajectory Negotiation for Separation

En route: (Separation and local-TFM Conformance)

- · CE-5 (a/b) Free Maneuvering
- CE-6 (a/b) Trajectory Negotiation

En route: (local-TFM)

CE-7 Collaboration for SUA/Wx/Complexity

En route / Terminal: (local-TFM)

CE-8 Collaboration for Arrival Metering

Terminal Arrival:

- CE-9 Free Maneuvering Around Weather
- CE-10 Trajectory Up link [to avoid] Weather

Terminal Arrival:

- CE-11 Self Spacing for Accurate Merge
- CE-12 Trajectory Exchange for Accurate Merge

Terminal Approach:

CE-13 Closely Spaced Approaches

Surface Arrival:

CE-14 Intelligent [Taxi] Routing

February 27-28, 2001

DAG-TM Concept Elements

- Four CEs are being pursued:
 - CE-5: Free Maneuvering for User-preferred Separation Assurance and Local traffic flow management (TFM)
 Conformance
 - CE-6: Trajectory Negotiation for User-preferred
 Separation Assurance and Local TFM Conformance
 - CE-7: Collaboration for Mitigating Local TFM
 Constraints due to Weather, Special Use Airspace, and Complexity
 - CE-11: Self-spacing for Merging and In-trail Separation

February 27-28, 2001

CE-5:

Free Maneuvering for User-preferred Separation Assurance and Local TFM Conformance

Problem:

 Potential traffic separation conflicts often cause ATSPissued deviations that are excessive or not preferred by users

Solution:

- Air: Cockpit Display of Traffic Information (CDTI)equipped aircraft maneuver freely for separation assurance
- Ground: ATSP monitors separation (with complementary ground-based tools) and provides separation assurance for non-equipped aircraft

February 27-28, 2001

Free Maneuvering

Conflict Prediction:
Protected Zones Predicted to Merge

Conflict Resolution: Cooperative Solution

Nominal Trajectory

Proposed Resolution

February 27-28, 2001

CE 6:

Trajectory Negotiation for User-preferred Separation Assurance and Local TFM Conformance

Problem:

 Potential traffic separation conflicts often cause ATSPissued deviations that are excessive or not preferred by users

Solution:

- User and ATSP negotiate for efficient resolution of conflicts
- User-ATSP data exchange (intent, winds) for improved trajectory prediction
- ATSP uses enhanced DSTs with conflict detection & resolution capabilities

February 27-28, 2001

Trajectory Negotiation

Air Traffic Control

AOC Ground links:

Airline preferences

Airline Operational Control

Key flight data

ATSP Ground links:

Relevant NAS state information

February 27-28, 2001

CE 7:

Collaboration for Mitigating Local TFM Constraints due to Weather, SUA, and Complexity

Problem:

 ATSP cannot accommodate many trajectory change requests due to workload and ATSP-issued clearances are often not preferred by users (AOC or flight deck)

Solution:

- User and ATSP negotiate for user-preferred trajectory changes:
 - User formulates preferred trajectory changes, based on the latest weather, special use airspace, and local TFM constraints and transmits it to the ATSP
 - ATSP evaluates trajectory change request for approval

February 27-28, 2001

Collaboration for Wx, SUA, and Complexity Constraints

Congested Airspace

Airspace / sector complexity (dynamic density) is predicted to exceed acceptable levels

—— Planned Path (airborne)

Planned Path (pre-departure)

O Predicted Conflict

En route Air Route Traffic Control Center

February 27-28, 2001

CE 11:

Self-Spacing for Merging and In-trail Separation

- Problem:
 - Excessive spacing buffers on final approach reduce arrival throughput and airport capacity
- Solution:
 - CDTI-equipped aircraft are cleared to maintain separation relative to a leading aircraft:
 - Flight deck displays and guidance for:
 - Self-spacing and merging
 - Fine tuning of fixed-time spacing
 - ATSP displays & procedures for shared separation responsibility

February 27-28, 2001

Terminal Area Self Spacing

February 27-28, 2001

Potential DAG-TM Benefits

- Increased user efficiency and safety via improved conflict detection & resolution
- Increased user flexibility/efficiency (preferred trajectories)
- Reduced voice communications
- Reduction in ATSP workload for maintaining traffic separation
- Increased user flexibility/efficiency in the presence of dynamic en route constraints
- Increased arrival throughput
- Enhanced ATSP & pilot shared understanding of traffic management plan

February 27-28, 2001

Research Plans

- Develop and test decision support tools
- Three years of DAG-TM research
 - Develop and clarify concepts
 - Involve users (pilots, controllers, and dispatchers)
 - Conduct laboratory demonstrations of concepts
- Goal is to evaluate feasibility and potential benefits
- Deliver information and prototypes to the FAA by 2004

February 27-28, 2001

NASA Human Factors

- Developing tools for FAA Free Flight Phases 1 and 2
 - User interface design
 - Prototyping
 - Evaluations in laboratory and at sites
- DAG-TM Far Term Free Flight
 - Concept development
 - User interface design
 - Procedures development
 - Evaluations